Benchmark ViT

This is used to benchmark the performance of ViT model on text generation tasks. We evaluate it using 3 frameworks. Tensorflow-Transformers (default), HuggingFace PyTorch, HuggingFace Tensorflow and HuggingFace JAX (pending). Executing these scripts are fairly straightfoward and expect users to install the necessary libraries before executing the benchmark script.

All the configuration are managed using Hydra.

-> Machine - Tesla V100-SXM2 32GB

-> Tensorflow-version - 2.4.1

-> Huggingface-Transformer-Version - 4.12.5

-> PyTorch-Version - 1.9.0

Tensorflow-Transformers. (tft)

The default benchmark mode is tft.

  1. To execute tft (default) : python run.py benchmark=tft

  2. To execute type eg keras_model : python run.py benchmark=tft benchmark.model.type=keras_model

     * a. keras_model    -  Uses tf.keras.Model.
     * b. saved_model    -  Uses tf.saved_model
     * c. saved_model_tf-io   -  Uses tf.saved_model, ```model + tf.io ``` is serialized together.
    

HuggingFace-Tensorflow. (hf-tf)

  1. To execute hf-tf (default) : python run.py benchmark=hf benchmark.model.type=tf

HuggingFace-PyTorch. (hf-pt)

  1. To execute hf-pt (default) : python run.py benchmark=hf benchmark.model.type=pt

Official Benchmarks on Keras Flowed dataset (5000 samples)

Text Classification:
|                            |   batch_size | time (s)      |   samples/second |
|:---------------------------|-------------:|:-------------:|:-----------|------
| tft + saved_model          |           32 |  29.06  sec   |              126 |
| tft + saved_model + tf-io  |           32 |  17.62  sec   |              208 |
| tft + keras_model          |           32 |  29.48  sec   |              124 |
| hf_tf                      |           32 |  95.84  sec   |               38 |
| hf_pt                      |           32 |  24.79  sec   |              148 |
| tft + keras + hf pipeline  |           32 |  94.44 sec    |               39 |