Benchmark T5¶
This is used to benchmark the performance of T5 model on text generation tasks. We evaluate it using 3 frameworks. Tensorflow-Transformers (default), HuggingFace PyTorch, HuggingFace Tensorflow and HuggingFace JAX (pending). Executing these scripts are fairly straightfoward and expect users to install the necessary libraries before executing the benchmark script.
All the configuration are managed using Hydra.
-> Machine - Tesla V100-SXM2 32GB
-> Tensorflow-version - 2.4.1
-> Huggingface-Transformer-Version - 4.12.5
-> PyTorch-Version - 1.9.0
Tensorflow-Transformers. (tft)¶
The default benchmark mode is tft
.
To execute
Greedy Decoding
(default) :python run.py benchmark=tft
To execute
Beam Decoding
:python run.py benchmark=tft benchmark.text_generation.mode=beam +benchmark.text_generation.num_beams=3
* a. textdecoder_keras_model - Uses tf.keras.Model. * b. textdecoder_saved_model - Uses tf.saved_model, ```for``` loop to decode . * c. textdecoder_serializable - Uses tf.saved_model, ```model + text generation``` is serialized together.
To execute
Greedy Decoding
using let’s saytextdecoder_keras_model
:python run.py benchmark=tft benchmark.model.type=textdecoder_keras_model
[Note] - You can pass any arguments to tf_transformers.text.TextDecoder.decode
arguments to the hydra configuration
using +
.
HuggingFace-Tensorflow. (hf-tf)¶
To execute
Greedy Decoding
(default) :python run.py benchmark=hf benchmark.model.type=tf
To execute
Beam Decoding
:python run.py benchmark=hf benchmark.model.type=tf +benchmark.text_generation.num_beams=3
[Note] - You can pass any arguments to model.generate
arguments to the hydra configuration
using +
.
HuggingFace-PyTorch. (hf-pt)¶
To execute
Greedy Decoding
(default) :python run.py benchmark=hf benchmark.model.type=pt
To execute
Beam Decoding
:python run.py benchmark=hf benchmark.model.type=pt +benchmark.text_generation.num_beams=3
HuggingFace-JAX. (hf-jax) (Not Available)¶
To execute
Greedy Decoding
(default) :python run.py benchmark=hf benchmark.model.type=jax
To execute
Beam Decoding
:python run.py benchmark=hf benchmark.model.type=jax +benchmark.text_generation.num_beams=3
Official Benchmarks on XSUM¶
Greedy Decode:
| | batch_size | mode | max_length | time (s) | samples/second |
|:---------------------------|-------------:|:-------|-------------:|:-----------|-----------------:|
| tf_transformers_serialized | 32 | greedy | 64 | 514 sec | 22 |
| tf_transformers + tf-text | 32 | greedy | 64 | 517 sec | 22 |
| hf_tf | 32 | greedy | 64 | 1800 sec | 6 |
| hf_pt | 32 | greedy | 64 | 278 sec | 41 |
| hf_jax (model.generate) | 32 | greedy | 64 | N/A | N/A |
| hf_jax (pmap) | 32 | greedy | 64 | N/A | N/A |
Beam Decode:
| | batch_size | mode | max_length | time | samples/second |
|:---------------------------|-------------:|:-------------------|-------------:|:------------|:-----------------|
| tf_transformers_serialized | 32 | beam - num_beams=3 | 64 | 503 sec | 23|
| tf_transformers + tf-text | 32 | beam - num_beams=3 | 64 | 509 sec | 23|
| hf_tf | 32 | beam - num_beams=3 | 64 | 3240 sec | 3 |
| hf_pt | 32 | beam - num_beams=3 | 64 | 660 sec | 17|